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Environmental context. Microplastic particles are increasingly recognised as human-caused pollutants in soil
with potential harmful effects on soil microorganisms. Microplastics may also have evolutionary consequences
for soil microbes, because the particles may alter conditions in the soil and hence selection pressures. Including
an evolutionary perspective in an environmental assessment of microplastics could lead to new questions and
novel insights into responses of soil microbes to this anthropogenic stressor.

Abstract. Microplastic pollution is increasingly considered to be a factor of global change: in addition to aquatic
ecosystems, this persistent contaminant is also found in terrestrial systems and soils. Microplastics have been chiefly
examined in soils in terms of the presence and potential effects on soil biota. Given the persistence and widespread
distribution of microplastics, it is also important to consider potential evolutionary implications of the presence of
microplastics in soil; we offer such a perspective for soil microbiota. We discuss the range of selection pressures likely to
act upon soil microbes, highlight approaches for the study of evolutionary responses to microplastics, and present the
obstacles to be overcome. Pondering the evolutionary consequences of microplastics in soils can yield new insights into
the effects of this group of pollutants, including establishing ‘true’ baselines in soil ecology, and understanding future

responses of soil microbial populations and communities.
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Introduction

Microplastics are emerging as a factor of global change. These
particles, generally defined as plastics <5 mm (or <1 mm) in
size, have been found in a range of environments, including
freshwater ecosystems (Li et al. 2018a), the oceans, arctic sea
ice (Peeken et al. 2018), and also in terrestrial ecosystems and
the soil (Rillig 2012; Horton et al. 2017; Machado et al. 2018a).
Current studies in soils have focused on documenting the extent
of pollution (e.g. Scheurer and Bigalke 2018), with data from
soil lagging far behind our knowledge on oceans, where research
was started a decade earlier (Thompson et al. 2004). Research
has also started to document potential effects of microplastic
particles on individual soil biota, such as earthworms (Huerta-
Lwanga et al. 2017). Such studies are primarily aimed at
understanding potential ecological consequences of this novel
group of contaminants.

However, given the widespread — and likely long-term —
presence of microplastics in the environment, it is also important
to start considering evolutionary consequences. These have so
far not been discussed, except perhaps in the context of the
discovery of plastic-degrading microbes (Yoshida et al. 2016).
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Here we discuss various aspects of selection pressures likely
to act upon soil microbes (Fig. 1); we introduce approaches for
the study of evolutionary responses, and highlight general
obstacles to overcome. We argue that introducing an evolution-
ary perspective would present highly relevant questions to the
study of these persistent contaminants in soil.

Selection pressures

Microplastic particles may affect a range of soil properties,
which would present soil biota with certain selection pressures
(Fig. 1). This will lead to a shift in genotypes within populations,
either by selection among already existing lines, or among lines
based on de novo mutations, which is evolution. The question
therefore becomes: how might microplastics affect the envi-
ronment in soil, and which organismal traits would become
important as targets of selection?

The most obvious factor would be the microplastic as a novel
resource, i.e. a source of nutrients and carbon. In fact, a
microplastic may be a significant anthropogenic component of
soil organic carbon already (Rillig 2018). Plastics are often
made to be inert and they typically decompose very slowly; for
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Fig. 1. Drivers of potential evolutionary effects of microplastics on soil microbes. The outer ring depicts
microplastic particles with various properties (including size, shape, chemistry). Microbial communities (in
the centre) experience various effects triggered by the microplastic particles. Typical impacts with
evolutionary consequences include potential changes in soil structure, alteration of host availability or
function (host microbiome), nanoplastic toxic effects, plastic particles representing a resource, and
providing novel surfaces (with various chemicals attached, including heavy metals and antibiotics).

all intents and purposes of the human time horizon, they may be
regarded as persistent. However, microbiota (bacteria and fungi)
genotypes with an ability to use the carbon or other elements
contained in the microplastic may have a selective advantage,
and such genotypes would be expected to increase in relative
abundance within the population. The same is true for any other
additives chemically or physically bound to the plastic polymer
(e.g. plasticisers), which may be contained in microplastic
particles, even though such effects may be relatively shorter-
lived.

Furthermore, microplastics display an elevated ability to
absorb chemical substances, such as antibiotics, heavy metals
and other xenobiotics (Brennecke et al. 2016; Hirai et al. 2011;
Lietal. 2018b). For example, polyamides display a particularly
high adsorption capacity for antibiotics containing a carbonyl
group, like tetracycline or ciprofloxacin, since strong hydrogen
bonds between this carbonyl group and the amide group, as a
proton donor, of the microplastics can be established (Li et al.
2018b). However, the sorption ability differs greatly between
diverse plastic materials, sorbed substances and environmental
conditions (Li et al. 2018b). Still, though, with increased
antibiotic or heavy metal concentrations, microplastics and their
surroundings can constitute microniches in the soil environment
with highly selective conditions. In combination with

potentially providing a novel nutrient source, microplastics
can consequently serve as so called ‘hot-spots’ of horizontal
gene transfer (HGT) and microbial evolution. While in water
environments the additional surface introduced through micro-
plastics is the major factor in enhancing plasmid transfer, plastic
particles still favour microbial interactions to a larger extent than
natural aggregates (Arias-Andres et al. 2018). Moreover, the
presence of microplastics can positively alter the retention time
of other introduced stressors in the soil environment and thus
lead to longer lasting periods of exposure and subsequent
evolution to these conditions (Sun et al. 2018).

Microplastics also have the potential to change the soil
physical environment. The soil physical environment is gov-
erned by soil aggregation, a process to which many soil biota
contribute (Lehmann et al. 2017). Soil aggregates are relatively
stable entities whose interiors contain microhabitats with often
drastically different conditions to those on aggregate surfaces.
Such temporarily stable structures have recently been concep-
tualised as massively concurrent evolutionary incubators for
microbes (Rillig et al. 2017a), which means that evolutionary
processes and trajectories within aggregates are different com-
pared with those in a non-structured soil. Following this concept,
any changes in soil aggregation, that is, processes affecting rates
of formation, stabilisation or disintegration of aggregates, could
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also be expected to have consequences for microbial evolution.
Microplastics, especially linear fibres, could exert effects on
these processes. A change in soil aggregation and, correspond-
ing to these, pore distributions, could have multiple evolutionary
consequences within communities that are currently difficult to
predict in terms of traits and directions. In fact, changes in soil
structure and pore spaces may even lead to local extinction
because of microhabitat loss (Veresoglou et al. 2015). Recently,
the effects of microfibers on soil aggregation were demonstrated
experimentally (Machado et al. 20180), together with the
accompanying changes in bulk density and water holding
capacity.

Many soil microbes interact strongly with hosts, including
soil animals. Soil animals, in turn, may also interact with
microplastics: earthworms have been shown to ingest polysty-
rene beads (Rillig et al. 2017h; Huerta Lwanga et al. 2016,
2017), and some studies have shown deleterious effects on
earthworms (Huerta Lwanga et al. 2016). Microbes specialised
in degrading microplastic compounds have been isolated from
earthworm guts (Huerta Lwanga et al. 2018), which could be
part of a newly evolved complex host-symbiont interaction in
response to microplastic pollution in soils. Similarly, other soil
animals may also consume these particles (e.g. Collembola; Zhu
et al. 2018), with alteration in their associated microbiota. As
such, we expect cascading effects of microplastics on micro-
biota evolution through the effects on hosts.

When microplastics break down further to even smaller
particles, such particles may enter the nanosize range
(<0.1 pum). Such nanoplastic particles may have very different
properties, for example, they may be able to traverse biological
membranes and thus acquire toxic properties (Machado et al.
2018a). Genotypes with better resistance to such effects would
be expected to increase in abundance. These changes in com-
munity structure can further alter the complex interplay of
microbial processes in the soil environment. For example, in
an anaerobic digestion system, the exposure to polystyrene
nanoparticles caused an inhibition in the community-wide
productivity linked with significant changes in the microbial
community structure (Fu et al. 2018), which is also likely to be
observable in soil microbial communities.

Approaches for the study of evolutionary responses to
microplastic

Several approaches are available for the study of evolutionary
responses of soil biota to microplastics: experimental evolution
in the laboratory, resurrection ecology, and observational
studies using gradients.

Experimental evolution studies have a long tradition in
microbial biology (e.g. Lenski et al. 1991; Buckling et al.
2000). Such studies use serial transfers in the laboratory to
study the effects of a certain evolutionary driver. One could test
using such systems if traits predicted to be favoured by the
presence of a microplastic increase in abundance over time. In
addition, monitoring the abundance of certain genes may be
beneficial. Through its horizontal mobility across bacterial
species and linkage to genes conferring diverse resistance
phenotypes, the relative abundance of the class 1 integron-
integrase gene intl/1 is widely considered as a proxy to measure
the level of and the selective pressure associated with anthropo-
genic pollution (Gillings et al. 2015). In environmental studies,
it might be extremely difficult to disentangle the influence of
microplastics on int/l abundance from that of other potentially

stronger selective agents, such as antibiotic or heavy metal
residues or human associated microbial pollution (Amos et al.
2015). However, in controlled experiments, microplastics have
already been shown to increase the persistence of int/1 from
treated wastewater when entering a freshwater microbial com-
munity (Eckert et al. 2018). Consequently, int/ could provide a
promising target to quantitatively measure the selective pres-
sures imposed on soil microbial communities through the
addition of microplastic particles in experimental evolution
experiments.

Another promising approach may be resurrection ecology
(Franks et al. 2008). This is an approach where extant popula-
tions are compared with historical populations, which can be
reanimated (‘resurrected’) from historical samples. In our case,
this would entail the use of soil archives, for example, from
agricultural experiment stations, which include samples col-
lected before the widespread use of plastics. Populations
extracted from such historical samples could be compared with
extant populations from the same soil, with the caveat that other
factors influencing the evolution of the target organisms may
have changed concurrently.

Observational studies along established gradients of contam-
ination, which share this basic limitation with resurrection
studies, can also be used to learn about evolutionary responses
of populations to the presence of microplastics. Here, correla-
tions can be used to test for the link between predicted favoured
traits and their relative abundance in populations along a
microplastic contamination gradient.

Obstacles to overcome

The single most challenging aspect of studying microplastic is
its diversity: microplastics come in a bewildering range and
combination of chemical forms, sizes, surface properties, shapes
and modifications (e.g. additives). Therefore, this is very much
unlike studying specific contaminants, as this work encom-
passes a whole group of substances, additives and sizes with
potentially very different effects. For example, the effects of
beads, films and fibres on soil and soil microbes might be quite
different. This imposes significant challenges on the external
validity of any study, since, by necessity, these studies will be
limited to few plastic types for logistical reasons.

For an understanding of the evolutionary dynamics of micro-
plastic pollution in soil, it is important to realise that this is a
gradually changing factor: microplastics arrive through various
processes at the soil surface, and then accumulate gradually in
the soil, because of the limited rates of decomposition. This
means that, in any given soil, soil biota are not abruptly exposed
to high concentrations of microplastic particles, which tends to
be the current practice in experimental approaches aimed at
elucidating ecological or physiological effects. Thus, it may also
be useful to gradually expose soils and their biota to micro-
plastics in experiments; evolutionary dynamics in response to
gradual v. abrupt changes in the environment are expected to
differ significantly.

Here, we focus on soil microbes, because they are eminently
tractable experimentally. However, soil biota are enigmatically
diverse and contain entire food webs. It is thus risky to focus on
only particular groups of biota, since microplastics may modify
trophic interactions, thus exerting differential top-down effects.
Such effects would potentially be extremely important to gauge
evolutionary responses; however, it is a real challenge to capture
the entirety of soil biodiversity.
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Table 1. Examples of questions on evolutionary consequences of microplastic contamination in soils

Question

Explanation/background

Has the presence of the microplastic in soil already affected evolutionary
trajectories of soil microbiota? For example, has the microplastic created
new niches for soil microbes?

Can evolutionary changes to the microplastic within populations buffer
against or exacerbate changes in microbial community composition?
How do these changes interact with phenotypic plasticity?

Does the microplastic lead to local extinctions of microbial populations?

How does the microplastic (and microplastic type) interact with other evo-
lutionary drivers affecting soil microbial populations?

Persistence of the microplastic in soil, and the finding that the microplastic
appears to be ubiquitous in soil samples even from relatively non-human
influenced ecosystems (Scheurer and Bigalke 2018)

Eco-evolutionary dynamics

Changes in soil physical structure (as a consequence of possible effects on
soil aggregation) can lead to local exclusion of biota, for example soil
animals, which may host specific microbes (Veresoglou et al. 2015; Zhu
etal. 2018)

Global change is inherently a multifactorial phenomenon; also within cities
or on agricultural fields there are multiple evolutionary drivers that
co-occur with microplastic contamination

Finally, technical challenges remain, chiefly in respect to
adequately quantifying types and amounts of microplastics in
the soil matrix. These are certainly not unique to studies with an
evolutionary focus, but will also limit such studies, for example,
as far as observational studies are concerned, and in terms of
establishing true baseline levels of contamination in experiments.

Concluding remarks

Pondering evolutionary consequences of microplastics in soils
can lead to new questions (Table 1) and yield new insights into
the effects of this group of pollutants. By studying the selection
pressures experienced by a range of soil biota, we can learn
about the ways soil biota may adapt in future soils. Importantly,
this can also include interactions with other factors of global
change. However, when we now measure soil biota traits or
process rates, we may actually already be unknowingly cap-
turing such responses: this therefore becomes an issue of
understanding ‘true’ baselines in soil biology.

Much of what we discuss here may also be applicable to
aquatic systems; however, there the provision of a surface will
likely be a dominant factor (Arias-Andres et al. 2018), with the
possibility of novel interactions in the particle eco-corona,
including plasmid exchange.
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